CRT

Display

(HP-41CX, Hewlett Packard 1983 and DM41X, SwissMicros 2020)

Overview ${ }^{1}$

The CRT program represents a solution to the Chinese Remainder Theorem which states that a linear system of congruence equations with pairwise relatively prime moduli has a unique solution modulo the product of the moduli of the system.

Practically, it goes like this. Imagine a basket of eggs for which it is not known how many there are. Too lazy to count all of them one may know that if you take out three at a time, it ends up with two left-over. If one takes out five at a time, three are left-over, and by taking out seven at a time, two are left-over. This is enough information to figure out the least number of eggs that are in the basket. Here we go.

The basis for finding a solution for an integer number \mathbf{x} which satisfies the congruences of modulo definitions as explained below.

Suppose that $\mathbf{m}_{1}, \mathbf{m}_{2}, \ldots, \mathbf{m}_{k}$ are pairwise relatively prime positive integers, and $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ is a series of integers, congruences exist as follows:

```
x \equiv\mp@code{a}
M = m
x \equiv\mp@subsup{\mathbf{a}}{1}{}\mp@subsup{\mathbf{M}}{1}{}\mp@subsup{\boldsymbol{Y}}{1}{}+\mp@subsup{\mathbf{a}}{2}{}\mp@subsup{\mathbf{M}}{2}{}\mp@subsup{\mathbf{Y}}{2}{}+\ldots+\mp@subsup{\mathbf{a}}{k}{}\mp@subsup{\mathbf{M}}{k}{k}\mp@subsup{\boldsymbol{Y}}{k}{k}(\operatorname{mod}\mathbf{M})}\mathrm{ with:
M}\mp@subsup{\mathbf{M}}{\textrm{i}}{=M}\mathbf{M}/\mp@subsup{\mathbf{m}}{\textrm{i}}{}\quad\mathrm{ and }\quad\mp@subsup{\mathbf{Y}}{\textrm{i}}{}\equiv1/\mp@subsup{\mathbf{M}}{\textrm{i}}{}(\operatorname{mod}\mp@subsup{\mathbf{m}}{\textrm{i}}{})\quad\mathrm{ for i=1..k
```

The values y_{i} can be found by applying the Extended Euclidean Algorithm.

Example 1

Please note that my default FIX 5 setting which can be replaced by your preferred number of decimals at line 178. An example is used for the following three congruences:

[^0]```
x \equiv2 (mod 3)
x \equiv3(mod 5)
x \equiv2 (mod 7)
```

in which $\mathbf{M}=\operatorname{LCM}(3,5,7)=105$ and the value of $\mathbf{x}$ is to be determined．

| KEYSTROKES | DISPLAY | COMMENTS |
| :---: | :---: | :---: |
|  |  | Run CRT from the start with： $\begin{aligned} x & \equiv 2(\bmod 3) \\ x & \equiv 3(\bmod 5) \\ x & \equiv 2(\bmod 7) \end{aligned}$ |
| ［XEQ］［ALPHA］ CRT ［ALPHA］ | M $1 \times 7$ | Enter $\mathrm{m}_{1}$ ，which is 3 |
| 3［R／S］ |  | Enter $m_{2}$ ，which is 5 |
| 5［R／S］ | M $3=9$ | Enter $\mathrm{m}_{3}$ ，which is 7 |
| 7［R／S］ | M4 -7 | Press［R／S］to stop more $m_{i}$ entries |
| ［R／S］ | $91=9$ | Enter $\mathrm{a}_{1}$ ，which is 2 |
| 2［R／S］ | 为可字 | Enter $a_{2}$ ，which is 3 |
| 3［R／S］ | 973 | Enter $a_{3}$ ，which is 2 |
| 2 ［R／S］ | ํ， | Shows x |
| ［USER］［E］ | M米二1佰宁 | Press User Key E to show M |
| ［USER］［D］ |  | Press User Key D to show $m_{1}-m_{3}$ |
| ［USER］［C］ | $\cdots \cdots$ | Enter a value for X，e．g． 145 |
| 145 ［R／S］ | 日 $=$（1，代，こ； | Values for $a_{1}-a_{3}$ for same set $m_{1}-m_{3}$ |
| ［USER］［B］ | $7 \mathrm{~F}=7$ | Try these reverse values with $\mathrm{a}_{1}=1$ |
| 1［R／S］ | Я気 -7 | Enter $\mathrm{a}_{2}=0$ |
| 0 ［R／S］ | の $3=7$ | Enter $\mathrm{a}_{3}=5$ |
| $5[R / S]$ | ㅊ．．4年 | Shows lowest value for x |
| ［USER］［B］ | $91=7$ | Try these reverse values with $a_{1}=-1$ |
| －1［R／S］ | ワごワ | Enter $a_{2}=-1$ |
| －1［R／S］ | 可 -7 | Enter $a_{3}=-1$ |
| －1［R／S］ | 粊 $=4$ | Shows lowest value for x |
| ［USER］［E］ |  | Shows M |
| ［USER］［A］ | M $¢=7$ | Run again by entering new values for $m_{1}-m_{k}$ |

## Example 2

Another example is given with four congruences：

```
x \equiv5 (mod 7)
x \equiv7 (mod 11)
x \equiv14 (mod 31)
x \equiv8 (mod 45)
```

in which $\mathbf{M}=\operatorname{LCM}(7,11,31,45)=107415$ and the value of x is to be determined

## KEYSTROKES

| ［XEQ］［ALPHA］CRT［ALPHA］ | M $4=9$ |
| :---: | :---: |
| 7［R／S］ | M它可 |
| 11［R／S］ | 州 |
| 31［R／S］ | M4 9 |
| 45［R／S］ | M5 |


| ［R／S］ | 早－¢ |
| :---: | :---: |
| 5［R／S］ | 为可宁 |
| 7［R／S］ | ワコニワ |
| 14［R／S］ | 94宁 |

8［R／S］
［USER］［E］
［USER］［D］
［USER］［C］
145 ［R／S］
［USER］［B］
$6[R / S]$
$4[R / S]$
16［R／S］
5［R／S］
［USER］［A］

| 3［R／S］ |  |
| :---: | :---: |
| 7［R／S］ | M $\begin{gathered}\text {－} \\ \text {－}\end{gathered}$ |
| 11［R／S］ | M4 4 |
| 13［R／S］ |  |
| 17［R／S］ | M6 |
| 19［R／S］ | $\cdots 7=9$ |
| ［R／S］ | の1 |
| 1［R／S］ | 为凫 |
| 6［R／S］ | 可 $=9$ |
| 10［R／S］ | 可4 |
| 2［R／S］ | ¢5－ 9 |
| 13［R／S］ | の可： 7 |
| 16［R／S］ |  |
| ［USER］［E］ | M＊＊$=959959$ |
| ［USER］［A］ | M |

## COMMENTS

Run CRT from the start with：

$$
\begin{aligned}
x & \equiv 5(\bmod 7) \\
x \equiv 7(\bmod 31) & \equiv 8(\bmod 45)
\end{aligned}
$$

Enter $m_{1}$ ，which is 7
Enter $m_{2}$ ，which is 11
Enter $m_{3}$ ，which is 31
Enter $m_{4}$ ，which is 45
Press［R／S］to stop more $m_{i}$ entries
Enter $a_{1}$ ，which is 5
Enter $a_{2}$ ，which is 7
Enter $a_{3}$ ，which is 14
Enter $a_{4}$ ，which is 8
Shows x
Press User Key E to show $\operatorname{M}=\operatorname{LCM}(7,11,31,45)$
Press User Key D to show $m_{1}-m_{4}$
Enter a value for X，e．g． 45555
Values for $a_{1}-a_{4}$ for same set $m_{1}-m_{4}$
Try these reverse values with $\mathrm{a}_{1}=6$
Enter $\mathrm{a}_{2}=4$
Enter $a_{3}=16$
Enter $a_{4}=15$
Shows lowest value for $x$（same as entry）
Try a new one with $m_{1}=3$ ：
$x \equiv 1(\bmod 3) \equiv 6(\bmod 7)$
$x \equiv 10(\bmod 11) \equiv 2(\bmod 13)$
$x \equiv 13(\bmod 17) \equiv 16(\bmod 19)$

Enter $m_{2}=7$
Enter $m_{3}=11$
Enter $m_{4}=13$
Enter $m_{5}=17$
Enter $\mathrm{m}_{6}=19$
Continue to enter values $\mathrm{a}_{\mathrm{i}}$
Enter $a_{1}=1$
Enter $\mathrm{a}_{2}=6$
Enter $a_{3}=10$
Enter $a_{4}=2$
Enter $a_{5}=13$
Enter $a_{6}=16$
Shows x
Press User Key E for $\mathrm{M}=\operatorname{LCM}(3,7,11,13,17,19)$
Run again by entering new values for $m_{1}-m_{k}$

## Program Listing

The listing of CRT is given below with functions A-E in User Mode.

| 01-LBL "CRT" | $51 \mathrm{ST}+\mathrm{Y}$ | 101 * | 151 ARCL IND X |
| :---: | :---: | :---: | :---: |
| 02.LBL A | 52.LBL 06 | $102 \mathrm{X}<\gg$ | 152 RCL 02 |
| 033 | 53 STO Z | 103 RCL 01 | 153 RCL IND Y |
| 04 XEQ 10 | 54 RCL 02 | $104+$ | 154 ST/ Y |
| 051 | 55 * | 105 RCL IND X | 155 MOD |
| 06 ENTER | 56 RCL IND Y | $106 \mathrm{X}<\gg$ | $156 \mathrm{X}=0$ ? |
| 07-LBL 02 | 57 / | 107 RDN | 157 >"*" |
| 08 "M" | 58 LASTX | 108 * | 158 X<>Y |
| 09 ARCL X | 59 MOD | 109 ST+ 00 | 159 >"," |
| 10 >"=? ${ }^{\text {l }}$ | 601 | 110 RDN | 160 ISG X |
| 11 PROMPT | $61 \mathrm{X}=\mathrm{Y}$ ? | 111 STO Y | 161 GTO 14 |
| 12 FC?C 22 | 62 GTO 07 | 1122 | 162 XEQ 13 |
| 13 GTO 03 | $63 \mathrm{X}<>\mathrm{Y}$ | $113 \mathrm{X}<\gg$ | 163 PROMPT |
| 14 STO IND T | 64 RDN | 114 - | 164 GTO D |
| 15 ST* Z | 65 RCL Z | 115 RCL 01 | 165-LBL E |
| 16 RDN | 66 + | $116+$ | 166 XEQ 10 |
| 17 STO 01 | 67 GTO 06 | 117 X>0? | 167 "M*=" |
| 181 | 68.LBL 07 | 118 GTO 09 | 168 ARCL 02 |
| 19 ST+ T | 69 RDN | 119 RCL 00 | 169 XEQ 11 |
| $20+$ | 70 RDN | 120 RCL 02 | 170 PROMPT |
| 21 GTO 02 | 71 RCL X | 121 MOD | 171 GTO E |
| 22.LBL 03 | 72 RCL 01 | 122 "X=" | 172.LBL 10 |
| $23 \mathrm{X}<\gg \mathrm{Y}$ | 73 ST+ X | 123 ARCL X | 173 CF 29 |
| 24 STO 02 | 74 + | 124 XEQ 11 | 174 FIX 00 |
| 25-LBL B | $75 \mathrm{R}^{\wedge}$ | 125 PROMPT | 175 RTN |
| 26 XEQ 10 | 76 STO IND Y | 126 GTO B | 176.LBL 11 |
| 27 RCL 01 | 772 | 127.LBL C | 177 SF 29 |
| 283 | 78 R^ | 128 "X=? " | 178 FIX 05 |
| $29+$ | 79 STO Z | 129 PROMPT | 179 RTN |
| 30 RCL 01 | 80 | 130 STO 00 | 180.LBL 12 |
| 311 | 81 RCL 01 | 131 XEQ 12 | 181 RCL 01 |
| 32-LBL 05 | $82+$ | 132 "A=(" | 1822 |
| 33 "A" | $83 \mathrm{X}>0$ ? | 133 XEQ 10 | $183+$ |
| 34 ARCL X | 84 GTO 08 | 134-LBL 00 | 1841 E3 |
| $35>"=$ ? | 85 | 135 RCL 00 | 185 / |
| 36 PROMPT | 86 STO 00 | 136 RCL IND Y | 1863 |
| 37 FC?C 22 | 872 | 137 MOD | 187 + |
| 38 GTO C | 88 R^ | 138 ARCL X | 188 RTN |
| 39 STO IND T | 89-LBL 09 | 139 >"," | 189.LBL 13 |
| 40 RDN | 90 RDN | 140 RDN | $190-1$ |
| 411 | 911 | 141 ISG X | 191 AROT |
| $42 \mathrm{ST}+\mathrm{T}$ | $92+$ | 142 GTO 00 | 192 ATOX |
| $43+$ | 93 RCL 01 | 143 XEQ 13 | 193 >")" |
| $44 \mathrm{X}<=\mathrm{Y}$ ? | 94 RCL 02 | 144 PROMPT | 194 XEQ 11 |
| 45 GTO 05 | 95 RCL IND Z | 145 GTO C | 195 END |
| 462 | 96 / | 146-LBL D |  |
| $47 \mathrm{R}^{\wedge}$ | 97 RDN | 147 "M=(" |  |
| 48-LBL 08 | $98+$ | 148 XEQ 12 |  |
| 49 RDN | 99 RCL IND X | 149 XEQ 10 |  |
| 501 | $100 \mathrm{R}^{\wedge}$ | 150.LBL 14 | (321 bytes) |

## Registers, Labels and Flags

| REGISTERS | COMMENTS | LABELS | COMMENTS |
| :---: | :---: | :---: | :---: |
| R00 | Work solution for x | LBL00 | Calculate and show $\mathrm{a}_{\mathrm{i}}$ |
| R01 | Number of $m_{i}$ and $a_{i}, k$ | LBL01 | - |
| R02 | $\operatorname{LCM}\left(m_{1}, \ldots, m_{k}\right)$ | LBL02 | Entry of $\mathrm{m}_{\mathrm{i}}$ |
| R03. .R03+k | Values $m_{1} \ldots m_{k}$ | LBL03 | Point after entry $\mathrm{m}_{\mathrm{i}}$ |
| R03+k+1. .R03+2k | Values $a_{1} \ldots a_{k}$ | LBL04 | - |
|  |  | LBL05 | Entry of $\mathrm{a}_{\mathrm{i}}$ |
|  |  | LBL06 | Calculate $\mathrm{y}_{\mathrm{i}}$ and M |
|  |  | LBL07 | Loop around $\mathrm{y}_{\mathrm{i}}$ and M |
|  |  | LBL08 | Start of $\mathrm{y}_{\mathrm{i}}$ and M loop |
|  |  | LBL09 | Calculate x |
|  |  | LBL10 | Reset flag and fix number |
|  |  | LBL11 | Set flag and fix number |
|  |  | LBL12 | Set loop value for $m_{i}$ and $a_{i}$ |
|  |  | LBL13 | Show $m_{i}$ and $a_{i}$ values |
|  |  | LBL14 | Show value M |
|  |  | LBL A | User Mode: Entry of all mi |
|  |  | LBL B | User Mode: Entry of all $\mathrm{a}_{\mathrm{i}}$ |
|  |  | LBL C | User Mode: Entry x |
|  |  | LBL D | User Mode: Show all mi |
|  |  | LBL E | User Mode: Show M |


| FLAGS | COMMENTS |
| :--- | :--- |
| 22 | Check for keyboard input |
| 29 | Thousands separator |

## References

Mathematical article: Chinese Remainder Theorem by University of Colorado Denver. Interactive math website: Chinese Remainder Theorem by Cut the Knot.

## Downloads

The RAW/TXT format of the program is available via the website: CRT (in zip file).


[^0]:    ${ }^{1}$ This program is copyright and is supplied without representation or warranty of any kind. The author assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof

