
HP41-CX & DM41X program library 23 February 2023 v1.0 ROMAN

hooxies.nl 1 of 5 ©1999-2023 Auke Hoekstra

ROMAN
Display

(HP-41CX, Hewlett Packard 1983 and DM41X, SwissMicros 2020)

Overview1

Programs R2N (and R3N) and N2R convert decimal (Arabic) numbers to Roman notation and vice versa.
The number conversion goes from 1-3999.

Many conversion programs have been created by several users aiming to build with the least number of
bytes for the programs. The programs in this document require HP-41CX functions XTOA and ATOX. The
main difficulty with the conversion to and from Roman numbers is the so-called subtractive rule. To
convert numbers correctly the conversion rules are to be followed precisely. Here is a short summary.
Roman numerals are written using seven different letters: I, V, X, L, C, D and M, they represent the
numbers 1, 5, 10, 50, 100, 500 and 1,000. The use these seven letters makes up thousands of others. For
example, the Roman numeral for 2 is written as ‘II' which is just two 1's smushed together. The number 12
is XII which is just X (10) + II (2). Taking it a step further, the number 27 is written as XXVII, which when
broken down looks like XX (20) + V (5) + II (2); all totaled up it equals to 27.

Roman numerals are usually written largest to smallest from left to right. However, this is not always true.
The Romans didn't like writing four of the same numerals in a row, so they developed a system of
subtraction.

The Roman numeral for 3 is written III, but 4 is not IIII. Instead, the subtractive principle is used. The
number 4 is written as 'IV'. It shows the I (1) before V (5) and because the smaller number is before the
larger number, it must be subtracted here – giving the value 4 for IV. The same principle applies to the
number 9, which is written as IX.

There are six instances where subtraction is used:

• I can be placed before V (5) and X (10) to make 4 and 9.

• X can be placed before L (50) and C (100) to make 40 and 90.

• C can be placed before D (500) and M (1000) to make 400 and 900.

The number 994 is a great example of this rule – it's written CMXCIV. Broken down we have CM = 900,
XC = 90 and IV = 4; adding all these up results in 994.

The solution approach to code the algorithm is from Sriharsha Sammeta as described in:
https://www.geeksforgeeks.org/converting-decimal-number-lying-between-1-to-3999-to-roman-
numerals/amp/

1 This program is copyright and is supplied without representation or warranty of any kind. The author assumes no responsibility and shall have no
liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof

https://www.swissmicros.com/
https://www.geeksforgeeks.org/converting-decimal-number-lying-between-1-to-3999-to-roman-numerals/amp/
https://www.geeksforgeeks.org/converting-decimal-number-lying-between-1-to-3999-to-roman-numerals/amp/

HP41-CX & DM41X program library 23 February 2023 v1.0 ROMAN

hooxies.nl 2 of 5 ©1999-2023 Auke Hoekstra

Conversions

The solution approach follows the algorithm in which the normal and subtractive rules are implemented

in a straightforward manner. In this approach the MainSignificantDigit in the number is considered first.

For example, in 1234, the main significant digit is 1. Similarly in 345 it is 3.

To extract the main significant digit out, a divisor (div) like 1000 for 1234 (since 1234 / 1000 = 1) is required

which is 100 in the case of 345 is 3 (345 / 100).

A lookup called RomanNumeral is defined as = {1 : ‘I’, 5: ‘V’, 10: ‘X’, 50: ‘L’, 100: ‘C’, 500: ‘D’, 1000: ‘M’}

For each digit in the decimal number, the following logic applies (in which div refers to the Roman base):

if MainSignificantDigit <= 3

 RomanNumeral [div] * MainSignificantDigit

if MainSignificantDigit == 4

 RomanNumeral [div] + RomanNumeral [div*5]

if 5 <= MainSignificantDigit <= 8

 RomanNumeral [div*5] + (RomanNumeral [div] * (MainSignificantDigit-5))

if MainSignificantDigit == 9

 RomanNumeral [div] + RomanNumeral [div*10]

Here is an example: suppose the input number is 3984.

Iteration 1: Initial number = 3984

 MainSignificantDigit is 3; div = 1000. RomanNumeral [1000] * 3 gives: MMM

Iteration 2: Updated number = 984

MainSignificantDigit is 9; div = 100.

RomanNumeral [100] + RomanNumeral [100*10] gives: CM

Iteration 3: Updated number = 84

MainSignificantDigit is 8; div = 10.

RomanNumeral [10*5] + RomanNumeral [10]*(8-5) gives: LXXX

Iteration 4: Updated number = 4

MainSignificantDigit is 4; div = 1.

RomanNumeral [1] + RomanNumeral [10*5] gives: IV

The result by clubbing all the above gives MMMCMLXXXIV for the number 3984.

HP41-CX & DM41X program library 23 February 2023 v1.0 ROMAN

hooxies.nl 3 of 5 ©1999-2023 Auke Hoekstra

Example (1): N2R

KEYSTROKES DISPLAY COMMENTS

[XEQ] [ALPHA]N2R[ALPHA] Start program to convert to Roman

3984[R/S] Get the Roman notation for 3984

[R/S] Run it again

858[R/S] The Roman notation of 858

Example (2): R2N

KEYSTROKES DISPLAY COMMENTS

[XEQ] [ALPHA]R2N[ALPHA] Start program to convert to decimals

XCVIII[R/S] Get the number of XCVIII

[R/S] Run it again

MDCCCLXVIII[R/S] Get the number of MDCCCLXVIII

[R/S] Try another one

Program Design

One of the challenges in the HP-41CX programming language is to create lookup tables. For the
conversion from decimal to Roman numbers, the Roman (alphanumerical) numbers have been stored in
R01-R07 with the ASTO instruction.

For the conversion from Roman to decimal numbers, a lookup table is created which stores the decimal
values of the Roman equivalents as integer and the character code of the Roman notation as fraction. For
example: the character “M” is stored in R07 as 1000,77. The second challenge is the non-linear mixed
radix base for Roman numbers. The first radix needs to be multiplied by 5 to get to 5 but from the second
to the third a multiplication by 2 must be applied. During initialization in N2R this alternation was done via
a MOD instruction. The linear reference to the registers was coincidentally found to be done via a LOG
function, supplemented with 1 and multiplied by 1,75. The lookup table then shows as follows:

BASE ROMAN CHAR 1,75*(BASE+1) REGISTER VALUE

1 I 73 1,7500 R01 1,73

5 V 86 2,9732 R02 5,86

10 X 88 3,5000 R03 10,88

50 L 76 4,7232 R04 50,76

100 C 67 5,2500 R05 100,67

500 D 68 6,4732 R06 500,68

1000 M 77 7,0000 R07 1000,77

Above initialisation was done via a loop with LBL 00. Instead of the LBL 00 routine in N2R the numerical
values from above table could also be written as hard coded listing like in R2N to initialise with
alphanumerical values, see R3N in which also LBL 05 and GTO 05 has been taken out because there is no
need to bypass the LBL 00 initialisation loop anymore, making R3N one byte shorter than R2N.

HP41-CX & DM41X program library 23 February 2023 v1.0 ROMAN

hooxies.nl 4 of 5 ©1999-2023 Auke Hoekstra

Program Listing

The listing of programs N2R (Numerical to Roman) is given below:

 01▪LBL "N2R"
 02 "I"

 03 ASTO 01

 04 "V"

 05 ASTO 02

 06 "X"

 07 ASTO 03
 08 "L"

 09 ASTO 04

 10 "C"

 11 ASTO 05

 12 "D"

 13 ASTO 06
 14 "M"

 15 ASTO 07

 16 "N=?"

 17 PROMPT

 18 CLA

 19 STO 00

 20 1 E4

 21 STO 08

 22▪LBL 10

 23 10

 24 ST/ 08

 25 RCL 00
 26 X=0?

 27 GTO 11

 28 RCL 08

 29 /

 30 INT

 31 X=0?
 32 GTO 10

 33 STO 10

 34 XEQ IND X

 35 RCL 10

 36 RCL 08

 37 *
 38 ST- 00

 39 GTO 10

 40▪LBL 01

 41▪LBL 02

 42▪LBL 03

 43 1

 44 XEQ 12

 45 DSE Y

 46 XEQ 13

 47 RTN

 48▪LBL 04

 49 1
 50 XEQ 12

 51 5

 52 XEQ 12

 53 RTN

 54▪LBL 05

 55▪LBL 06
 56▪LBL 07

 57▪LBL 08

 58 5

 59 XEQ 12

 60 RCL Y

 61 5
 62 -

 63 X=0?

 64 RTN

 65 1

 66 XEQ 12

 67 DSE Y

 68 XEQ 13

 69 RTN

 70▪LBL 09

 71 1

 72 XEQ 12

 73 10
 74 XEQ 12

 75 RTN

 76▪LBL 12

 77 RCL 08

 78 *

 79 LOG
 80 1.75

 81 *

 82 LASTX

 83 +

 84 ARCL IND X

 85 RTN
 86▪LBL 13

 87 ARCL IND X

 88 DSE Y

 89 GTO 13

 90 RTN

 91▪LBL 11

 92 AVIEW

 93 END

(156 bytes)

and for R2N (Roman to Numerical) shown here:

 01▪LBL "R2N"

 02 7

 03 "MDCLXVI"

 04 1000

 05▪LBL 00

 06 STO IND Y

 07 ATOX

 08 100
 09 /

 10 ST+ IND Z

 11 RDN

 12 5

 13 /

 14 RCL Y
 15 2

 16 MOD

 17 1.5

 18 *

 19 1

 20 +

 21 *

 22 DSE Y

 23 GTO 00

 24▪LBL 05

 25 .

 26 STO 00
 27 STO 08

 28 "R=?"

 29 AON

 30 PROMPT

 31 AOFF

 32▪LBL 01
 33 7

 34 STO 09

 35 ATOX

 36 X=0?

 37 GTO 02

 38▪LBL 03

 39 RCL IND 09

 40 FRC

 41 100

 42 *

 43 X=Y?

 44 GTO 04
 45 RDN

 46 DSE 09

 47 GTO 03

 48▪LBL 04

 49 RCL IND 09

 50 INT
 51 RCL 08

 52 X<Y?

 53 ST- 00

 54 X<Y?

 55 ST- 00

 56 RDN

 57 ST+ 00

 58 STO 08

 59 GTO 01

 60▪LBL 02

 61 "N="

 62 FIX 00
 63 CF 29

 64 ARCL 00

 65 FIX 05

 66 SF 29

 67 PROMPT

 68 GTO 05
 69 END

(121 bytes)

HP41-CX & DM41X program library 23 February 2023 v1.0 ROMAN

hooxies.nl 5 of 5 ©1999-2023 Auke Hoekstra

The alternative of R2N is listed as R3N (with hard coded initialisation):

01▪LBL "R3N"

02 1,73

03 STO 01
04 5,86

05 STO 02

06 10,88

07 STO 03

08 50,76

09 STO 04

10 100,67

11 STO 05

12 500,68

13 STO 06

14 1000,77
15 STO 07

16 ,

17 STO 00

18 STO 08

19 "R=?"
20 AON

21 PROMPT

22 AOFF

23 LBL 01

24 7

25 STO 09

26 ATOX

27 X=0?

28 GTO 02

29 LBL 03

30 RCL IND 09
31 FRC

32 100

33 *

34 X=Y?

35 GTO 04
36 RDN

37 DSE 09

38 GTO 03

39 LBL 04

40 RCL IND 09

41 INT

42 RCL 08

43 X<Y?

44 ST- 00

45 X<Y?

46 ST- 00
47 RDN

48 ST+ 00

49 STO 08

50 GTO 01

51 LBL 02
52 "N="

53 FIX 0

54 CF 29

55 ARCL 00

56 FIX 5

57 SF 29

58 AVIEW

59 END

(120 bytes)

Registers, Labels and Flags

REGISTERS COMMENTS LABELS N2R COMMENTS

R00 Decimal value LBL00 Loop to initialize

R01 Value for 1 or “I” LBL01-09 Lookup N2R; loops R2N

R02 Value for 5 or “V” LBL10 Looping through div values

R03 Value for 10 or “X” LBL11 Display Roman values

R04 Value for 50 or “D” LBL12 Get Roman value from reg.

R05 Value for 100 or “C” LBL13 Repeat Roman value

R06 Value for 500 or “L” LABELS R2N

R07 Value for 1000 or “M” LBL00 Initialise registers

R08 div LBL01 Loop each Roman character

R09 Previous div or counter LBL02 Display decimal value

R10 Temporary numeral value LBL03 Check match for each value

 LBL04 Handle match of Roman char.

 LBL05 Restart point

FLAGS COMMENTS

- Flags not used

Downloads

The RAW/TXT format of the program is available via the website: ROMAN (in zip file).

https://hooxies.nl/?page_id=37210

